Corrections

Excess Gibbs Free Energies at Eight Temperatures and Excess Enthalpies and Volumes at T = 298.15 K for Butanenitrile + 2-Butanol. Rosa Garriga, Francisco Sánchez, Pascual Pérez, and Mariano Gracia, J. Chem. Eng. Data 1997, 42, 78–83.

Recently we found a mistake in V^E measurements for $\{(1-x)$ butanenitrile +x2-butanol $\}$, which is important to correct in order to allow others to take advantage of our data

The $V^{\!E}$ values that appear in the original Table 4 must be replaced by:

X	$V^{\! ext{E}}\!/ ext{cm}^3 \cdot ext{mol}^{-1}$	X	$V^{\rm E}$ /cm 3 ·mol $^{-1}$
0.0285	0.046	0.5383	0.348
0.0778	0.122	0.7142	0.288
0.1850	0.239	0.7171	0.286
0.3208	0.318	0.8350	0.206
0.3633	0.334	0.8470	0.195
0.4757	0.351	0.9626	0.068
0.5205	0.349		
$V^{\rm E}/{\rm c}$	$m^3 \cdot mol^{-1} = x(1-x)$	$\{1.396 + 0.07\}$	(8(1-2x) +

 $V^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1} = x(1-x) \{1.396 + 0.078(1-2x) - 0.339(1-2x)^2\}; \ \sigma(V^{\rm E}) = 0.004$

Consequently, Figure 3b must be modified, and the second to last sentence would be " V^E is also lower for 1-butanol than for 2-butanol".

JE980495W

10.1021/je980495w Published on Web 09/24/1998

Vapor-Liquid Equilibria of Binary Mixtures Cyclopentane + Isopropyl Acetate, Isopropyl Acetate + Hexane, and Cyclopentane + Methyl Methacrylate at 101.3 kPa. Kong-Wei Cheng, Jia-Yuh Chen, Muoi Tang, and Yan-Ping Chen, *J. Chem. Eng.* Data 1997, 42, 754-757.

The unit of the binary parameters A_{12} and A_{21} listed in Table 7 should be (cal mol⁻¹). It was misprinted as (J mol⁻¹) in the original article.

JE980496O

10.1021/je9804960 Published on Web 10/28/1998 Phase Equilibria in the Systems Oxolane + Octane and Methyl 1,1-Dimethylethyl Ether + Hex-1-ene. Jaime Wisniak, Eti Fishman, and Rotem Shaulovitch, *J. Chem. Eng. Data* 1998, *43*, 304–306.

There is a misprint in the temperatures listed in Table 2. The correct values are

T/K
391.40
388.27
381.80
377.95
372.33
367.34
360.39
352.35
348.60
347.28
346.08
344.90
343.92
342.75
341.49
339.95
338.68
338.04

JE9804944

10.1021/je9804944 Published on Web 10/02/1998